skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Davies, Christopher_J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Previous studies of rapid geomagnetic changes have highlighted the most extreme changes in direction and field strength found in paleomagnetic field models over the past 100 ky. Here we study distributions of rates of change in both time and space. Field models based on direct observations provide the most accurate values for rates of change, but their short duration precludes a complete description of field behavior. Broader representation is provided by time‐varying paleofield models, here including GGF100k, GGFSS70, LSMOD.2, CALS10k.2, HFM.OL1.A1, pfm9k.2, and SHAWQ‐iron age although variability across models and lack of temporal and spatial resolution of fine scale variations make direct comparisons difficult. For the paleofield we define rapid changes as exceeding the peak overall value of 0.4° yr−1for directional changes and 150 nT yr−1for intensities as established by thegufm1model spanning 1590–1990 CE. We find that rapid directional changes are associated with low field strength and can spread across all latitudes during such episodes. Distributions of directional rates of change exhibit high skewness for models that include excursions. Rates of change in field intensity exceeding 150 nT yr−1arise in brief intervals during the Holocene particularly associated with the strong field Levantine Iron Age Anomaly. Around the Laschamp excursion there are also rare localized occurrences of rapid intensity change. Limitations in current models make it difficult to define absolute rates for past changes, but we see that rapid changes are essential field characteristics not observed in the modern field that should nevertheless be regarded as an essential for Earth‐like dynamo simulations. 
    more » « less